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Molecules of the extracellular matrix have 
long been known to promote cell attachment, 
affect cell morphology and cell migration, and 
affect neuronal attachment and neurite out- 
growth during development [Hay, 19911. It has 
been recognized only more recently that a vari- 
ety of extracellular matrix proteins also exhibit 
counteradhesive properties that balance the ad- 
hesive forces mediated by traditional matrix pro- 
teins such as fibronectin [Crossin, 19961. These 
counteradhesive forces include the ability to al- 
ter cell morphology to a more rounded state 
with the possible consequences of affecting intra- 
cellular physiology, decreasing cell migration on 
permissive substrates, and stimulating or reduc- 
ing neurite sprouting and extension depending 
on the cellular circumstances. Surprisingly, both 
adhesive and counteradhesive domains are found 
in some extracellular matrix proteins, among 
them the unusual glycoprotein tenascin (TN). 
The ability of tenascin domains to affect adhe- 
sive or counteradhesive activities together with 
an attempt to understand the control of its gene 
expression will be considered in this review. 
Other reviews of the structure and functions of 
TN in development and disease are available 
[Crossin, 19961. 

TN is a large glycoprotein of the extracellular 
matrix that exhibits a site-restricted distribu- 
tion during development. It is expressed at very 
low levels in many adult tissues, but is reex- 
pressed in many tumors, at sites of inflamma- 
tion, and during regeneration of the peripheral 
nervous system [reviewed in Crossin, 19961. The 
TN polypeptide is divided into four structural 
regions, each of which appears to have distinct 
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biological functions. The amino-terminus is a 
cysteine-rich region that is responsible for link- 
ing the protein into hexamers forming a struc- 
ture called a hexabrachion that is visible in 
rotary-shadowed electron micrographs. Adja- 
cent to the cysteine-rich region are 13% contigu- 
ous repeats homologous to the epidermal growth 
factor (EGF), and then a series of repeats ho- 
mologous to the type I11 repeats of fibronectin 
(FN 111). The smallest TN isoform contains eight 
FN I11 repeats, and between one and eight addi- 
tional FN I11 repeats can be included as the 
result of alternative splicing of TN RNA to gen- 
erate the known TN protein isoforms. The car- 
boxyl-terminal segment is homologous to the p 
and y chains of fibrinogen, and contains a poten- 
tial calcium binding site. 

STRUCTURE-FUNCTION ANALYSIS 
OF TN AND TN RECOMBINANT DOMAINS 

Early studies were equivocal as to whether 
TN could support cell attachment. This presum- 
ably was because TN can inhibit cell attachment 
to otherwise permissive substrates (e.g., fibronec- 
tin) through domains which have now been 
shown to be counteradhesive. It is now clear 
that multiple domains within the protein can 
support cell adhesion. Moreover, the adhesive 
and counteradhesive activity of TN can be 
mapped to distinct TN domains (see Fig. l), each 
of which presumably has a specific set of recep- 
tors. Whether the adhesive or counteradhesive 
activities in TN predominate in any one situa- 
tion appears to depend both on the assay used 
and on the receptor repertoire on a particular 
cell type. 

Adhesion of a number of cell types to TN is 
now well established, and a number of cell sur- 
face receptors have been identified. Among the 
receptors identified to date are several integrins, 
a large family of heterodimeric cell surface recep- 
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Fig. 1. Schematic model of the domain structure of tenascin. Schematic representations of the domains 
in human and chicken tenascin are shown. The shaded boxes represent fibronectin type 111 repeats that are 
alternatively spliced. Shown below are the regions where biological activities have been mapped using 
recombinant fragments or monoclonal antibodies. 

tors that recognize a number of extracellular 
matrix proteins Wamada, 1991; Hynes, 19921. 
Integrins have been shown to bind to at least 
two different regions within TN [Bourdon and 
Ruoslahti, 1989; Prieto et al., 1993; Sriramarao 
et al., 1993; Joshi et al., 1993; Yokosaki et al., 
1994; Phillips et al., 19951. Integrin binding to 
extracellular matrix proteins often occurs via 
the recognition sequence RGD within the extra- 
cellular matrix proteins. In TN, RGD is present 
in chicken [Jones et al., 1988, 1989; Pearson et 
al., 19881 and human [Gulcher et al., 19891 
homologs, but not in mouse [Weller et al., 19911, 
newt [Onda et al., 19911, or pig [Nishi et al., 
19911 homologs in which the corresponding se- 
quences are RVD, RGL, and RAD, respectively. 
All of these sequences are found at the same 
location within the third FN I11 repeat. The 
third FN 111 repeat has now been shown to bind 
to integrins avp3 and avp6 in addition to a9pl 
and a8pl integrins, but their binding is much 
less dependent on the RGD sequence than the 
binding of other integrins to their RGD-contain- 

ing ligands. For example, when the RGD se- 
quence in the chicken recombinant third FN I11 
repeat was mutated to RAD, cell attachment 
was unaffected [Prieto et al., 19931; when the 
sequence was mutated to RAA, cell attachment 
via avp3 integrin was almost completely abol- 
ished. In contrast, avp3 binding to vitronectin, a 
well established ligand for this integrin, was 
completely abolished when the RGD sequence 
was mutated to RAD [Cherny et al., 19931. Cells 
expressing the a9pl integrin bound equally well 
to the chicken TN fragments containing RGD, 
RAD, or RAA Bokosaki et al., 19941. This sug- 
gests that sites other than RGD within the third 
FN I11 repeat may be capable of supporting cell 
attachment. 

A number of studies [Prieto et al., 1993; Srira- 
marao et al., 1993; Phillips et al., 19951 suggest 
that other 61 integrins may bind to sites in TN 
other than the RGD-containing third FN type 
I11 repeat. For example, the sixth FN type I11 
repeat in chicken TN supports the attachment 
of both central (CNS) and peripheral nervous 
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system (PNS) neurons. This repeat is also ca- 
pable of enhancing neurite sprouting from CNS 
and PNS neurons. In contrast, the third FN 
type I11 repeat supports the attachment of PNS 
but not CNS neurons. In PNS neurons, this 
repeat is capable of enhancing neurite elonga- 
tion in cells that attach to it, although the per- 
centage of cells exhibiting neurites is not in- 
creased. These findings suggest two conclusions: 
CNS and PNS neurons express different subsets 
of integrins that are capable of recognizing differ- 
ent domains of TN, and neurite sprouting and 
neurite elongation mediated by TN are sepa- 
rable events that are mediated by distinct TN 
domains [Phillips et al., 19951. 

A number of other types of cell surface recep- 
tor for TN have been demonstrated in cell attach- 
ment assays and suggested by biochemical as- 
says [reviewed in Crossin et al., 19961. For 
example, annexin I1 binds TN specifically 
through the TN alternatively spliced FN I11 
repeats A through D [Chung and Erickson, 
19941. In contrast, the neural cell adhesion mol- 
ecule contactidF11 [Zisch et al., 19921 as well 
as fibronectin [Chiquet-Ehrismann et al., 19911 
both appear to bind better to the smallest iso- 
form of TN, indicating that alternative splicing 
may be a means for selecting for a particular cell 
surface and extracellular matrix ligands for TN. 
Heparin and heparan sulfate proteoglycans as 
well as chondroitin sulfate proteoglycans, includ- 
ing syndecan, have also been shown to be recep- 
tors for TN. The heparin binding activity ap- 
pears to  be mediated by the C-terminal 
fibrinogen domain since this domain is able to 
bind to  heparin-agarose, and heparatinase treat- 
ment of cells abolishes their ability to  attach to 
the fibrinogen domain in cell attachment assays. 

EFFECTS OF TN ON CELLULAR PHYSIOLOGY 
AND CELL SIGNALING 

The binding of TN to integrins may activate 
signal transduction pathways which are known 
to be affected by this receptor family [Schwartz, 
19921. A number of early studies indicated that 
when cells attached to TN or to mixed sub- 
strates of TN and other extracellular matrix 
proteins they remained round and did not flat- 
ten. Flattening of cells on the substratum and 
growth factor stimulation are both accompanied 
by increases in intracellular pH (pHi). In the 
presence of TN, cells maintained a lower pHi 
[Crossin, 19911 and the different domains within 
TN were subsequently shown to affect pH, differ- 

ently [Krushel et al., 19941. For example, the 
adhesive fragments, comprising the second 
through sixth fibronectin type I11 repeats and 
the fibrinogen domain, induced an increase in 
pHi in fibroblast and glioma cell lines similar to  
that observed in cells plated on fibronectin. These 
two fragments had different effects, however, on 
cell morphology [Prieto et al., 1992; Krushel et 
al., 19941. The FN I11 repeats supported cell 
attachment and spreading, whereas on the fi- 
brinogen domain cells remained round. The in- 
creased pHi in cells plated on FN I11 repeats 
could be reversed by preincubation of the cells 
with RGD-containing peptides to inhibit inte- 
grin function. Similarly, the increase in pHi 
mediated by the fibrinogen domain was pre- 
vented when cells were pretreated with hepa- 
ratinase, suggesting that a heparan sulfate pro- 
teoglycan at  the cell surface mediates the 
response to this domain. The counteradhesive 
repeats of TN (the EGF domains and FN type 
I11 repeats 7 and 8) kept cells at a lower pHi, 
thus resembling the activity of intact TN. The 
ability of TN to mediate these effects on pHi was 
sensitive to the activity of protein kinase C, 
inasmuch as drugs that effect protein kinase C 
activity were able to  reverse the effects of the 
different TN domains on pHi. Recent studies 
have shown that TN is subject to degradation by 
matrix metalloproteinases in vitro [Imai et al., 
1994; Siri et al., 19951. This suggests that proteo- 
lytic fragments generated in vivo may be able to  
exert different effects on pHi during develop- 
ment, wounding, and disease. The types of ef- 
fects that may be mediated by pHi changes of 
this magnitude include the activity of cytoplas- 
mic enzymes, intracellular trafficking, cytoskel- 
eta1 integrity, and effects on neural physiology 
[discussed in Crossin, 19961. 

Several studies have suggested that changes 
in gene expression result when cells interact 
with each other or with a variety of substrata. 
Based on the signaling results discussed above, 
it is possible that cellular interaction with TN 
may induce changes in gene expression. Cell 
shape changes such as those affected by the 
presence of TN have also been shown to be 
important in regulating the expression of sev- 
eral genes associated with the synthesis and 
degradation of the ECM itself. One recent study 
compared fibroblasts plated on FN or mixtures 
of FN and TN. When compared with cells plated 
on FN, those plated on the mixture of FN and 
TN showed an increase in the synthesis of four 
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gene products: collagenase, stromelysin, a 92 
kDa gelatinase, and c-fos [Tremble et al., 19941. 
The effect on metalloproteinase expression was 
reversed in the presence of a monoclonal anti- 
body that reacts with the seventh and eighth FN 
type I11 repeats, suggesting that these changes 
in gene expression may be related to the counter- 
adhesive activity of TN. 

We recently used a subtractive hybridization 
strategy [Mauro et al., 19941 to explore directly 
whether the presence of TN could change gene 
expression in early embryonic neuronal cells. 
Like the previous study on gene expression 
changes following N-CAM-mediated neuronal 
aggregation, these studies with TN revealed a 
number of cDNA clones encoding cell adhesion 
molecules, ECM molecules, and ribosomal pro- 
teins, the expression of which differed between 
TN-treated and untreated neurons [Crossin, 
19961. The cDNA clones enriched in the cDNA 
libraries prepared from TN-treated cells include 
neurofascin [Rathjen et al., 19871 and the 
chicken homolog of the opioid binding CAM, 
OB-CAM, both cell adhesion molecules of the Ig 
superfamily. Claustrin, an ECM keratan sulfate 
proteoglycan with counteradhesive properties 
[McCabe and Cole, 19921, was found to be en- 
riched in the library prepared from untreated 
cells, suggesting that its synthesis was downregu- 
lated by the presence of TN. This proteoglycan 
also has been shown to inhibit neurite out- 
growth and cell attachment on permissive sub- 
strates [Cole and McCabe, 19911, and thus it 
shares with TN several biological activities. In 
addition, several transcription factors were en- 
riched in the TN-treated cDNA library. These 
gene expression studies indicate that the expres- 
sion of TN at particular locales during develop- 
ment and in disease may result in subsequent 
changes in gene expression that may in turn 
affect tissue differentiation or cellular migra- 
tion. 

THE TN NULL MUTANT MOUSE 

The combination of these biological properties 
and the dramatic site-restricted distribution of 
TN during embryogenesis suggested that the 
molecule may dramatically affect developing 
morphology when and where it is expressed. It 
was therefore surprising that mice with tar- 
geted deletions of the TN gene [Saga et al., 19921 
were initially reported to be essentially normal 
and reproductively competent. However, a de- 
tailed analysis of the developing nervous system 

and behavioral analyses were not carried out in 
this initial study, and recent developmental and 
behavioral studies indicate that these tenascin 
null mice are not normal. For example, in the 
TN null mutant mouse, although the develop- 
ment of the barrel cortex is normal, the re- 
sponse of glial cells after wounding was not 
normal [Steindler et al., 19951. Moreover, other 
studies have indicated that motor coordination 
in these animals is abnormal and that there may 
be possible malfunctions in the peripheral ner- 
vous system innervating the gut. These findings 
would be consistent with a role for TN in neural 
crest development and in the development of the 
cerebellar and cerebral cortices, as suggested by 
the distribution pattern of TN and by perturba- 
tion studies. 

The evaluation of this and other transgenic 
mice raises question about earlier notions that 
the importance or function of a molecule could 
be discerned from the phenotype of a null mu- 
tant animal. Normal phenotypes have been ob- 
served after the knockout of other developmen- 
tally significant gene products [reviewed in 
Crossin, 1994; Routtenberg, 19951, and it has 
been suggested that related gene products may 
compensate for the function of the deleted gene 
product. It is also possible that evolution has 
selected for particular combinations of mol- 
ecules, no one of which is uniquely necessary for 
the development of a particular phenotype. That 
is to say that backup strategies have been evolved 
for particularly important morphogenetic func- 
tions. 

CONTROL OF TENASCIN GENE EXPRESSION 
BY PATTERN-FORM I NC C EN ES 

Tenascin exhibits a dramatic site-restricted 
expression in the anterior-posterior axis during 
gastrulation, neurulation, and somite formation 
[Crossin et al., 19861. The presence of TN dur- 
ing somite formation has been postulated to 
play a role in the movement of neural crest cells 
through the somites, and possibly their conden- 
sation and differentiation, to form the periph- 
eral ganglia [discussed in Crossin, 1994; Crossin 
et al., 19961. Supporting this hypothesis is the 
observation that neural crest cell migration can 
be perturbed by introduction of TN antibodies 
both in vivo and in vitro. During development of 
both central and peripheral nervous systems, 
TN has been shown to be important in such 
critical processes as neuronal migration, axon 
guidance, synaptogenesis, and border forma- 
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tion, for example, in the barrel cortex. The ex- 
pression of TN in nervous tissue sharply de- 
creases during development and the protein is 
not expressed at high levels in the adult [re- 
viewed in Faissner, 19961. It is reexpressed, 
however, in a variety of glial tumors, and anti- 
bodies to TN have recently been used as probes 
for the localization and possible treatment of 
such tumors [reviewed in Carnemolla et al., 
19961. 

Based on these unusual spatiotemporal expres- 
sion patterns, it was hypothesized that the prod- 
ucts of homeodomain proteins might control the 
spatiotemporal expression of TN. Homeobox- 
containing gene products are expressed in dis- 
tinctive anterior-posterior and dorsal-ventral 
patterns in Drosophila [McGinnis and Krum- 
lauf, 19921; mutations in these genes result in a 
variety of homeotic transformations, for ex- 
ample, the development of legs in the places 
where antennae should be. All of these genes are 
transcription factors containing a helix-loop- 
helix DNA binding motif called the homeodo- 
main, and they have distinct homologs in verte- 
brates. 

Recent studies have indicated that the prod- 
ucts of homeodomain-containing genes could 
participate in the regulation of TN expression. 
For example, co-transfection of TN promoter/ 
reporter constructs and constructs driving the 
synthesis of the Evx-1 homeodomain protein 
resulted in the dramatic enhancement of TN 
promoter activity [Jones et al., 19921. The re- 
gion responsible for the activation was an 89 
base pair region which contained a TRE-AP1 
site known to be involved in the response of 
many genes to growth factors by binding of 
transcription factors of the fos and jun families 
[Curran and Franza, 19881. The site within this 
89 base pair segment of the TN promoter was 
also found to bind to the Fushi tarazu homeodo- 
main protein, suggesting that direct binding of 
homeodomain proteins also plays a role in the 
expression of TN [Jones et al., 19921. In cotrans- 
fection experiments, other homeobox-contain- 
ing genes were also shown to activate the TN 
promoter including hoxA1, hoxB9, hoxD9, pax-3, 
and pax-6, all of which encode different classes 
of homeodomain proteins [Jones and Copertino, 
19961. 

Recent comparisons of the chicken [Jones et 
al., 19901, mouse [Copertino et al., 19951, and 
human TN [Gherzi et al., 19951 promoters em- 
phasize the potential importance of homeobox 

control of TN gene expression. The proximal 
regions of these promoters exhibit a remarkable 
structural similarity. In particular, TAAT mo- 
tifs that resemble binding sites for homeodo- 
main proteins are conserved between the hu- 
man, mouse, and chicken promoters. In addition, 
the mammalian promoters also contained the 
TRE-AP1 sequence, which was shown to be 
required for activation by Evx-1 although this 
sequence is located in a different region from 
that in the chicken promoter. A number of other 
potential regulatory elements have been identi- 
fied in the chicken, mouse, and human promot- 
ers. How these different regulatory regions act 
to result in the place-dependent expression of 
TN is a critical area of ongoing research, the 
results of which may help to  explain how TN 
expression is regulated during development and 
in disease. 

PERSPECTIVES 

Further studies on the control of TN gene 
expression, cellular signaling initiated by TN 
binding, and subsequent changes in gene expres- 
sion provide a challenging arena for future stud- 
ies on this unusual counteradhesive ECM pro- 
tein. Preliminary studies have established that a 
variety of transcription factors from the hox and 
pax gene families may be important in control- 
ling tenascin gene expression. Whether these 
sequences function in vivo to control the exquis- 
ite spatiotemporal expression patterns of tenas- 
cin is of particular interest for understanding 
morphogenesis since many hox andpax mutants 
have aberrant morphological phenotypes. Fur- 
ther studies on the cell surface receptors for 
tenascin and the signaling pathways activated 
by tenascin binding are also an important ave- 
nue for further study, especially with regard to 
the elucidation of how TN and its various frag- 
ments mediate its counteradhesive properties. 
Related to this issue is whether binding of a 
particular ECM protein or cell surface receptor 
to TN affects the subsequent binding of any of 
these molecules to  other ligands. It appears that 
the activity of intact TN represents a summa- 
tion of its adhesive and counteradhesive do- 
mains together with the repertoire of particular 
cell surface receptors and ECM proteins made 
by particular types of cells. An understanding of 
changes in the gene expression programs that 
result from TN-mediated cell signaling would 
significantly advance our understanding of the 
role of TN and other counteradhesive proteins 
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in development and disease. The accumulation 
of such studies on TN should yield a better 
understanding of the role of this protein in 
affecting cellular processes, including cell prolif- 
eration, cell migration, cell differentiation, neu- 
rite sprouting and outgrowth, and differential 
gene expression, that are important in develop- 
ment, regeneration, and disease. 
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